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Abstract 
 
This paper answers to the simple question, “What difference does the regularization with 
relative entropy make?” For this purpose, we parametrically calibrate the Merton (1976) 
jump-diffusion model the S&P 500 futures options with or without regularization and 
judge the impact of the regularization. The calibration result indicates that with or 
without regularization, calibrated risk-neutral parameters, calibrated log return 
probability densities, and calibrated Lévy measures are not significantly different using 
the risk-neutral prior except for near maturity options. Another finding is that the 
regularized calibration with the statistical prior is not implementable because of the 
remarkable deviation of the statistical prior from the risk-neutral prior.   
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[1] Introduction 
 
A calibration problem is an inverse problem which tries to identify (i.e. back out) a vector 
of parameters θ Q  which produce model option prices consistent with market (i.e. 
observed) option prices. When the objective function which is usually the sum of squared 
dollar pricing errors between market prices and model prices is not convex, the 
calibration problem is an illposed problem. In this illposed calibration problem, some 
solution can always be found (i.e. non-uniqueness), but the solution obtained is very 
sensitive to the initial values (i.e. instability) and it is not the global minimum with very 
high likelihood. Traditionally in the field of finance, the gradient descent algorithms such 
as the BFGS method are generally used to solve this illposed problem. To raise a few 
examples, Bates (1996), Bakshi, Cao, Chen (1997), Dumas, Fleming, and Whaley (1998), 
Carr, Chang, and Madan (1998b), and Carr, Geman, Madan, and Yor (2002).    
 
To overcome above mentioned difficulties in illposed problems, statisticians and 
mathematicians have long been using regularization methods. Regularization methods are 
not the methods to locate the global solution, but they are the methods to enhance the 
uniqueness and the stability of the calibration solution by sacrificing its precision. Cont 
and Tankov (2004a, b) choose the regularization with the relative entropy (E Q P)  which 
is a measure of distance between two probability measures and describes the amount of 
inefficiency to assume that the true distribution is  when the true distribution of the 
random variable 

Q
X  is . It is very convenient that the relative entropy for Lévy 

processes can be explicitly expressed in terms of their Lévy measures. It is important to 
realize that using the relative entropy and using the prior mean the introduction of the 
bias of the calibration solution toward the prior to gain the numerical stability and the 
uniqueness by making the objective function more convex. It implies that the user has 
some or strong belief in the use of the prior (i.e. otherwise, why do you bother?). Cont 
and Tankov develop the non-parametric regularized calibration method for Merton 
(1976) jump-diffusion model with the relative entropy.   

P

 
The goal of this paper is to give an answer to the following simple question, “What 
difference does the regularization with relative entropy make?” For this purpose, we 
calibrate the Merton (1976) jump-diffusion model which is a Lévy model with occasional 
but rare jumps to the S&P 500 futures options with or without regularization. The impact 
of the regularization over the unregularized calibration is judged by the calibrated log 
return probability density and the calibrated Lévy measure.  
 
Note that we apply Cont and Tankov’s (2004 a, b) regularization method with the relative 
entropy to the index options parametrically with the MJD model. This is different from 
Cont and Tankov’s (2004 a, b) research which is to calibrate Merton jump-diffusion 
model non-parametrically with the relative entropy regularization.  
 
The calibration result suggests that with or without regularization, calibrated risk-neutral 
parameters, calibrated log return probability densities, and calibrated Lévy measures are 
not significantly different. It seems that Lévy measures are more sensitive to the 
regularization than log return probability measures. Notice also that the difference in 

 2



calibrated parameters between the regularized and the unregularized become more 
pronounced especially for near maturity options.  
 
This paper is organized as follows. Section 2 gives the detailed description of the Merton 
jump-diffusion model. Section 3 presents the (unregularized) calibration problem as an 
inverse problem and as an illposed problem due to the non-convexity of the objective 
function. Section 4 briefly reviews Cont and Tankov’s (2004a, b) method of the 
regularized calibration with the relative entropy which tries to achieve a unique solution 
and a stable solution. Section 5 describes the S&P 500 futures option data set and obtains 
two different prior probability measures. One is the statistical prior and the other is the 
risk-neutral prior. Section 6 provides our main empirical result of the difference between 
the regularized calibration and the unregularized calibration in terms of the calibrated 
parameter vector, the calibrated log return probability density, and the calibrated Lévy 
measure. Section 7 concludes.  
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[2] Merton Jump Diffusion (MJD) Model (1976) 
 
Consider a fixed filtered probability space [0, ]( , , )t∈ ∞Ω F P . A jump diffusion process 

 with the Lévy triplet [0, ]( tX ∈ ∞ ) 0)2( , ( ),X X XA f xσ λ γ= =A =

iX

 is defined as a Brownian 
motion plus a compound Poisson process: 
 
                                              [0, ] [0, ] 1

( ) ( ) tN
t t i

X Bσ∈ ∞ ∈ ∞ =
≡ +∑ ,                                          (1) 

 
where [0, ]( tB )σ ∈ ∞  is a multiplicative Brownian motion with the Lévy triplet 

, ∑  is a compound Poisson process with the Lévy triplet 2( , 0, 0)B B BA σ γ= = =A
1
tN

ii
X

=

0)( 0, ( ),C C CA f xλ γ= = =A  which is the sum of  jumps . . .i i d iX  from the jump size 
probability density , and  is a Poisson process with the intensity ( )f x [0, ]( tN ∈ ∞ ) λ +∈R  
which counts the number of random arrival times of an event in the time interval [0 :  kT , ]t
 
                                                              

1
1

kt t
k

N ≥
≥

= T∑ .                                                        (2) 

 
Note that a Poisson process  and the jumps sizes  are assumed to be 
independent. This jump diffusion process  possesses the following properties. It 
is a jump Lévy process, but not a pure jump Lévy process because the Gaussian variance 
term of the jump diffusion process  is non-zero. In other words, the process contains a 
Brownian motion

[0, ]( tN ∈ ∞ )
)

1( )i iX ≥

[0, ]( tX ∈ ∞

XA
1. The Lévy measure of the jump diffusion process is given by:  

 
                                                         ( ; ) ( )X x f xλ λ=A ,                                                    (3) 
 
where  is the jump size probability density. The total mass of the Lévy measure of 
the jump diffusion process is the intensity parameter 

( )f x
λ  because a Lévy measure ( )xA  

measures the arrival rate of jumps: 
 

( ) ( ) ( )X x dx f x dx f x dxλ λ λ
∞ ∞ ∞

−∞ −∞ −∞
= = =∫ ∫ ∫A < ∞ , 

 
which is finite because the number of arrivals of an event is almost surely finite for 
any  including an infinite time horizon t0t > = ∞ 2. In other words, the jump diffusion 
process is a finite activity Lévy process which means that the process has finite number 
of small jumps and finite number of large jumps. The jump diffusion process is also a 
Lévy process of infinite variation in the interval [0, )∞  because 2 0XA σ= ≠ .3  
                                                 
1 Consult section 3.7.1 of Matsuda (2005a).  
2 The number (6) of theorem 4.10 of Matsuda (2005a).  
3 Consult theorem 3.11 of Matsuda (2005a). 
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Merton jump diffusion (MJD) model specifies the log return jump size density as the 
normal, i.e. 2. . . ( , )iX i i d Normal µ δ∼ : 
 

                                            
( )2

22

1( ) exp
22

MJD

x
f x

µ
δπδ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

.                                     (4) 

 
Thus, the Lévy measure in MJD model can be expressed as: 
 

                                    
( )2

, 22
( ; , , ) exp

22
MJD X

x
x

µλλ µ δ
δπδ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

A .                               (5) 

 
The characteristic function of MJD process can be obtained by the use of the Lévy-
Khinchin representation4 as: 
 

                           (
2 2

, ( ; , , , ) exp ( ) 1
2MJD X ft σ ωφ ω σ λ µ δ λ φ ω )⎡ ⎤⎧ ⎫

= − + −⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

,                       (6) 

 
where fφ  is the characteristic function of the jump size density: 
 

2 2

( ) exp
2f i δ ωφ ω ωµ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

  
The probability density of the MJD process can be computed using the conditionally 
normal property of the jump diffusion process of the equation (1)5: 
 
           

0
( ; , , , ) ( ) ( )MJD t t t Poisson tj
x x N j N jσ λ µ δ ∞

=
= =∑P P P =  

           
( )

( )
( )

2

2 20 2 2

( ) 1( ; , , , ) exp
! 22

t j
t

MJD t j

x je tx
j t jt j

λ µλσ λ µ δ
σ δπ σ δ

−
∞

=

⎧ ⎫−⎪ ⎪= −⎨ ⎬
++ ⎪ ⎪⎩ ⎭

∑P .      (7) 

 
Its standardized moments are computed by: 
 
                                   [ ]tE X tλ µ= ,                                                                                  (8) 
                                   2 2 2[ ] ( )tVariance X tσ λδ λµ= + + , 

                                                 
4 Consult the section 4.3.4 of Matsuda (2005a) where the characteristic function of a compound Poisson 
process is obtained by using the Lévy-Khinchin representation for the finite variation processes.  
5 This computation involves the series expansion rather than the integration because a compound Poisson 
process is a continuous time stochastic process with the discontinuous sample paths.  
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2 2

3/ 2

( 3[ ]
[ ]t

t

tSkewness X
Variance X

)λµ µ δ+
= , 

4 4 2 2

2

( 3 6 [ ]
[ ]t

t

tExcess Kurtosis X
Variance X

)λ µ δ µ δ+ +
= . 

 
These standardized moments indicate that µ  is a skewness parameter with 0µ =  
producing the symmetric probability density. Larger values for λ  and σ  lead to the 
larger variance and smaller excess kurtosis of the probability density.     
 
MJD model specifies the asset price dynamics  defined on a filtered risk neutral 
probability space  as an exponential of a Lévy process : 

[0, ]( t TS ∈ )

[0, ]( , , )t T∈Ω F Q [0, ]( )t TL∈

 
0 exp( )t tS S L= , 

 
where the choice of the Lévy process is the jump diffusion process plus the drift 

,MJDr ϖ− Q : 
 
                                    ,( ) ( ; , , , )t MJD tL r t MJD xϖ σ λ µ δ≡ − +Q Q Q Q Q ,                                (9) 
 
where  is the instantaneous risk-free interest rate and all parameters are under the 
risk neutral probability measure . The term 

r +∈R
Q ,MJDϖ Q  is the convexity correction which 

takes the following form in the MJD model: 
 

                                       
2 2

, exp 1
2 2MJD

δ σ
ϖ λ µ

⎧ ⎫⎛ ⎞⎪= + −⎜ ⎟⎨ ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

Q
Q Q Q

⎪+⎬
Q .                                (10) 

  
Defining the log return (i.e. log price relative) of the asset price as 0ln( / )t tR S S≡  and 
using the equation (9): 
 
                                                      ,(t t MJD )x R r tϖ= − − Q .                                               (11) 
 
Since obviously the drift ,MJDr ϖ− Q  is deterministic, the probability density of the log 
return in the MJD model under the risk neutral probability measure  can be expressed 
using the probability density (7) and the relationship (11) as:     

Q

 

          
( )

( )
( )

2

2 20 2 2

( ) 1( ; , , , ) exp
! 22

t j
t

MJD t j

x je tR
j t jt j

λ µλσ λ µ δ
σ δπ σ δ

−
∞

=

⎧ ⎫−⎪ ⎪= −⎨ ⎬
++ ⎪ ⎪⎩ ⎭

∑Q ,    (12) 
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with the equation (11). Note that all parameters in the density (12) are under the risk 
neutral probability measureQ .  
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[3] Calibration without Regularization 
 
[3.1] Calibration: An Inverse Problem 
 
Calibration is an inverse problem. Consider two problems. One of which is named as a 
direct problem and the other is named as an inverse problem. In the context of option 
pricing, a direct problem is formulated as: 
 
                               ( )model ( )( , , , ) r T t

i t i T iC S K T t e E S Kθ +− −
t

⎡ ⎤− = −⎣ ⎦F
Q Q ,                       (13) 

 
where European call option prices  across different strikes model

iC i IK ∈  are calculated 
given a model, a vector of risk-neutral model parameters θ Q , and variables such as a spot 
asset price  and a maturity T . Following the martingale asset pricing, a European 
call price is equal to the discounted value of the terminal payoff under a risk-neutral 
probability measure . For example, 

tS t−

Q ( , , , )θ σ λ µ δ=Q Q Q Q Q  in the MJD case. An inverse 
problem (called a parameter identification problem) is formulated as the reverse of this 
procedure. It is to identify (i.e. back out) a vector of parameters θ Q  which produce model 
option prices consistent with market (i.e. observed) option prices: 
 
                                                        .                                                (14) model market( )iC Cθ =Q

i

)

 
The exact match of the model prices to the market prices is not necessary because of the 
noise (i.e. bid-ask spreads) contained in the market option prices . Thus, the 
calibration problem becomes a best approximation problem between market prices and 
model prices which is done using a nonlinear least squares (NLS): 

market( i IC ∈

 

                                          
2model market

1
arg min ( )

N

i i
i

C C
θ

θ θ
=

= ∑Q

Q � Q − ,                                  (15) 

 
where the risk-neutral parameter vector θ Q  is chosen by minimizing the sum of squared 
dollar pricing errors between market prices and model prices. The gradient descent 
algorithms such as the BFGS method are generally used to solve the optimization 
problem of the equation (15). 
 
Followings are examples of literatures which use this NLS without regularization. Bates 
(1996) calibrates stochastic volatility/jump models to a currency option, Bakshi, Cao, 
Chen (1997) calibrates stochastic volatility/jump models to an index option,and Dumas, 
Fleming, and Whaley (1998) uses unregularized calibration for fitting a deterministic 
volatility function. Carr, Chang, and Madan (1998b) calibrate the Variance Gamma 
model to an index option through the maximum likelihood estimation which is equivalent 
to the NLS. Carr, Geman, Madan, and Yor (2002) calibrates the extended CGMY model 
to individual stock options and index options.   
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[3.2] Calibration: An Illposed Problem 
 
According to Cont and Tankov (2004a, b), an illposed problem is a problem which 
possesses the following properties. Firstly, an illposed problem may not have a solution 
or may have an infinite number of solutions. Secondly, when a solution or solutions of an 
illposed problem exists (exist) and if some type of an additional criterion is used to 
choose a solution, it is very sensitive to the initial values. Thirdly, when a solution of an 
illposed problem exists, it might be difficult to obtain it because it is likely to get stuck at 
local minima (due to the non-convex objective function).  
 
Our interest of the calibration problem of the equation (15) is an illposed problem whose 
illposedness is solely caused by the non-convex objective function. One example of the 
sum of squared dollar pricing error function for the MJD model is illustrated in Figure 1 
as a function of parameters λQ  and µQ  with other parameters being fixed. Due to its 
non-convex nature, the optimization problem (15) possesses the following illposedness. 
Firstly, some solution can always be found (this is not necessarily a good thing). But, 
secondly, the solution obtained is very sensitive to the initial values. In other words, the 
solution is very instable. Thirdly, it is highly likely that the solution obtained is not the 
global minimum.  
 
Note that the calibration problem of the equation (15) is not the only illposed problem. 
Illposed problems are everywhere which include the numerous maximum likelihood 
estimation problems. In the past, researchers have used an ad hoc treatment for illposed 
problems such as repeating the optimization procedure with various initial values.    
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A) From one angle. 
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B) From another angle. 
 

Figure 1 3D plot of the MJD error function 
2model market

1
( )

N

i i
i

C Cθ
=

−∑ � Q  The sum of 

squared dollar pricing error function is plotted as a function of parameters λQ  and µQ  
with other parameters being fixed.  
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[4] Regularized Calibration 
 
[4.1] Relative Entropy 
 
We saw in the previous section that the NLS calibration problem has the difficulty in 
achieving a unique solution and a stable solution. To overcome this issue, regularization 
methods have been developed. Engl, Hanke, and Neubauer (1996) give a brief summary 
of regularization methods. In this paper, we focus on the regularization with relative 
entropy which is used by Cont and Tankov (2004a, b). Note that Cont and Tankov are the 
first to use relative entropy regularization for the calibration of the exponential Lévy 
models, but they are not the first in using relative entropy regularization in the finance 
context. We believe it was Avellaneda, Friedman, Holmes, and Samperi (1997) who used 
the relative entropy regularization for the calibration of volatility surfaces.   
 
The relative entropy is a measure of distance between two probability measures which is 
expressed as the expected value of the logarithm of the likelihood ratio. If we knew that 
the true distribution of the random variable X  is , the relative entropy P ( )E Q P  
describes the amount of inefficiency to assume that the true distribution is .  Q
 
DEFINITION: Let  be a real-valued rcll process defined on a filtered 
probability space . Let  and Q  be two equivalent probability measures 
on . The relative entropy or Kullback-Leibler distance between two 
probability measures  and  is defined as: 

[0, ]( TX ∈ ∞ )

[0, ]( , , )T∈ ∞Ω F P P

[0, ]( , )T∈ ∞Ω F
P Q

 

                                         ( ) [ln ] [ lnd dE E
d d

= =E Q PQ QQ P
P P

]d
d
Q
P

.                                 (16) 

 
Relative entropy is a convex function of  because after a rearrangement: Q
 

                                                      ( ) [ (dE f
d

=E P QQ P
P

)] ,                                              (17) 

 
where  is a strictly convex function as illustrated in Figure 2. This strict 
convexity of 

( ) lnf x x x=

(E Q P)  plays a crucial role in enhancing the uniqueness of a solution of an 

illposed problem. Relative entropy is always non-negative (i.e. ( ) ≥E Q P 0 ) and 

( ) =E Q P 0 1 if and only if /d d =Q�P  almost surely. Cover and Thomas (1991) provide 
the proof.  
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Figure 2 Strictly convex function ( ) lnf x x x=  
 
[4.2] Relative Entropy for Lévy Processes 
 
Very conveniently, relative entropy for Lévy processes can be explicitly expressed in 
terms of their Lévy measures. The following useful theorem corresponds to the 
proposition 2 of Cont and Tankov (2004b).  
 
THEOREM: Relative Entropy for Lévy Processes 
 
Let  be a real-valued Lévy process defined on a filtered probability space 

 with the Lévy triplet 
[0, ]( TX ∈ ∞ )

[0, ]( , , )T∈ ∞Ω F P ( , , )A γAP P P . Define a probability measure  

under which a Lévy process  is described by the triplet (

∼Q P

[0, ]( TX ∈ ∞ ) , , )A γAQ Q Q . Note that 

 because . Then, for every time horizon A A A= =P Q ∼Q P [0, ]T ∈ ∞ , the relative 
entropy of TFQ  with respect to TFP  can be expressed as: 
 

                      { }21

01
( ) ( )( ) 1

2T A
T x dx
A

γ γ ≠−
= − − −∫ A AE Q P Q PQ P                

                                                         ln 1 ( )d d dT d
d d d

∞

−∞

⎛ ⎞
+ + −⎜

⎝ ⎠
∫

A A A A
A A A

Q Q Q
P

P P P x⎟ .                   (18) 

 
When  and Q  are both the risk-neutral martingale measures, for every time horizon 

, the relative entropy of 
P

[0, ]T ∈ ∞ TFQ  with respect to TFP  can be reduced to: 
 

                      { }2

0( ) ( 1)( )( ) 1
2

x
T A

T e dx
A

∞

≠−∞
= − −∫ A AE Q PQ P  

                                                         ln 1 ( )d d dT d
d d d

∞

−∞

⎛ ⎞
+ + −⎜

⎝ ⎠
∫

A A A A
A A A

Q Q Q
P

P P P x⎟ .                   (19) 
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Example of Relative Entropy: Brownian Motion with Drift     Let  be a 
Brownian motion with drift defined on a filtered probability space 

[0, ]( )TX ∈ ∞

[0, ]( , , )T∈ ∞Ω F P  with 

the Lévy triplet 2( ( ) , 0,A )σ γ µ= = =AP P P P P : 
 

T TX T Bµ σ= +P P P P

) )

. 
 
 Define a probability measure  under which a Brownian motion with drift 

 is described by the triplet 
∼Q P

[0, ]( TX ∈ ∞
2( ( ) , 0,A σ γ µ= = =AQ Q Q Q Q . Note that 

2A A σ= =P Q  because . Then, for every time horizon ∼Q P [0, ]T ∈ ∞ , the relative 
entropy of TFQ  with respect to TFP  can be expressed as by applying the equation 
(18): 
                              

                                  { }
2

2

2

1( )
2 2T
T Tµ µµ µ
σ σ

⎛ ⎞−
= − = ⎜

⎝ ⎠
E

Q P
Q PQ P ⎟ .                            (20) 

                  
Thus, in Gaussian case, the relative entropy function is symmetric: 
 

( ) ( )T T=E EQ P P Q , 
 
 because . The relative entropy function of the equation (20) is 
plotted in Figure 3 by setting  and 

2( ) (µ µ µ µ− = −Q P P Q 2)
1T = 1σ =  for simplicity. Notice its strict convexity. 
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Figure 3 Relative entropy function for Gaussian case We set 1T =  and 1σ =  for 
simplicity. 
 
Example of Relative Entropy: Merton jump-diffusion process     Let  be a 
jump diffusion process of the equation (1) defined on a filtered probability space 

 with the Lévy triplet 

[0, ]( )TX ∈ ∞

[0, ]( , , )T∈ ∞Ω F P 2( ( ) , ( ) ,A f xσ λ γ 0)= =AP P P P P P =

) 0)

. Define a risk-
neutral martingale probability measure  under which a jump diffusion process 

 is described by the triplet 
∼Q P

[0, ]( TX ∈ ∞
2( ( ) , ( ) ,A f xσ λ γ= =AQ Q Q Q Q Q = . Note that 

2A A σ= =P Q  because . From the equation (5), the Lévy measures take the form:  ∼Q P
 

                                            
( )2

22
exp

2( )2 ( )

x µλ
δπ δ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

A
PP

P
PP

,                                    (21) 

                                            
( )2

22
exp

2( )2 ( )

x µλ
δπ δ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

A
QQ

Q
QQ

.                                   (22) 

 
Then, after a little bit of algebra, the relative entropy of TFQ  with respect to TFP  can 
be expressed as by applying the equation (19) with the Lévy measures (21) and (22): 
 

           
2 2 2

1 2 2
2

1( ) e 1 e 1
2

T
δ δµ µ

λ λ
σ

+ +−
⎧ ⎫⎛ ⎞ ⎛⎪ ⎪= − −⎜ ⎟ ⎜⎨ ⎬⎜ ⎟ ⎜⎪ ⎪⎝ ⎠ ⎝⎩ ⎭

E
Q P

Q P
Q PQ P

⎞
− ⎟⎟

⎠
 

                                            
2 2

2

3 ( )ln
2 2

λ δ µ µ δλ λ λ
λ δ δ

⎛ ⎞ ⎛ − +
+ + + − +⎜ ⎟ ⎜

⎝ ⎠ ⎝

Q P Q P Q
Q P Q

P Q P

⎞
⎟
⎠

.        (23) 

                       
The relative entropy function of the equation (23) is plotted in Figure 4 by setting 

, 0.25T = 0.1σ = , , 0.15δ =Q 1λ =P , 0.1µ = −P , and . Cont and Tankov 
(2004b) points out that the relative entropy function in the MJD case of the equation (23) 
is not a concave function in 

0.1δ =P

λQ µQ δ Q  because its Lévy measure is a nonlinear function 
in λ , µ , δ .  
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Figure 4 Relative entropy function for Merton Jump-Diffusion Process We set 

, 0.25T = 0.1σ = , , 0.15δ =Q 1λ =P , 0.1µ = −P , and .  0.1δ =P

 
[4.3] Regularized Calibration 
 
The uniqueness and the stability of the solution of the NLS calibration problem of the 
equation (15) can be augmented by adding the relative entropy term: 
    

                               
2model market

1
arg min ( ) ( )

N

i i T
i

C C
θ

θ θ
=

= − +∑ E
Q

Q � Q Q Pα ,                         (24) 

 
where α  is a regularization parameter. The convexity of the relative entropy ( )TE Q P  
makes the non-convex objective function more convex, thus, enhancing the uniqueness 
and the stability of the solution. According to Cont and Tankov (2004a, b), the relative 
entropy (TE Q P)  remains convex in the neighborhood of its global minimum as long as 

the parameterization is well-behaved when (TE Q P)  is not strictly convex with respect to 

θ Q . 
 
By adding and minimizing the relative entropy (TE Q P) , we are making the risk-neutral 
martingale measure Q  as close as possible to the prior (i.e. statistical) measure . For 
example, consider a case where  exactly matches the market option prices. but  is 
far away from the prior P : 

P
1Q 1Q

 
1

2model market
1 1

1
( ) ( ) ( )

N

i i T T
i

C Cθ α α
=

− + =∑ E EQ� Q P Q P , 
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In this case, we are willing to sacrifice the precision of the calibration and choose  
which is closer to the prior  within the error bounds of the bid-ask spread: 

2Q
P

 
2

2model market
2 1

1
( ) ( ) (

N

i i T T
i

C Cθ α α
=

− + <∑ E EQ� Q P Q P) . 

 
In other words, the regularization by the relative entropy means the introduction of the 
bias of the calibrated parameter vector θQ  under the risk-neutral martingale measure  
toward the prior parameter vector 

Q
θP  under the statistical measure  (i.e. time series 

behavior of underlying prices) rather than relying solely on the new information 
contained in the quoted option prices.  

P

 
There are two important parameters which should be chosen with care. Those are the 
prior parameter vector θP  and the regularization parameter α . With respect to the choice 
of the prior θP , Cont and Tankov (2004a, b) suggest the followings. The first is to 
employ the historical prior which is estimated using the time series of the underlying 
price by the statistical method (i.e. maximum likelihood estimation). The second  
approach which does not require the time series data is to run an unregularized calibration 
of the equation (15) and use the successively updated unregularized risk-neutral 
parameter solution θQ  as the prior θP . The third is to use the long-run average of the 
unregularized risk-neutral parameter solutions θQ . The third approach is preferable over 
the second because the role of the prior is to enforce the stability in the solution.  
 
A regularization parameter α  is a weight assigned to the relative entropy (TE Q P)  and 
cannot be approximated by a priori fixed number because of its dependence on the level 
of noise present in the data. When α  is large, we relatively trust the prior information 
more than the new information contained in the market option prices. When α  is small, 
we relatively trust the new information more. If 0α = , the calibration problem reduces to 
a simple NLS. There are several approaches to compute the regularization parameter α  a 
posteriori, but Cont and Tankov (2004a, b) propose a use of discrepancy principle by 
Morozov (1966) which is the oldest, very popular, and a simple posteriori choice rule for 
α . The first step is to run the unregularized NLS of the equation (15) and obtain the 
unregularized risk-neutral diffusion parameter estimate 0ˆασ = . The second step is to 
compute the model intrinsic a priori quadratic pricing error 2

0êα=  by running the 
unregularized NLS of the equation (15) with the fixed 0ˆασ = . Let 2 ( , )e αα θ  be a posteriori 
model intrinsic quadratic pricing error for a given regularization parameter 0α >  with 

( , , , )α α α α αθ σ λ µ δ= . We expect: 
 

2 2
0ˆ( , )e eα αα θ => , 
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because of the addition of the relative entropy. Morozov (1966) is willing to trade off the 
precision of the calibration for the numerical stability and the uniqueness of the 
calibration solution within the error bounds of the model intrinsic a priori quadratic 
pricing error , thus, a regularization parameter 2

0êα= α  can be estimated by numerically 
solving the following equation with gradient-descent algorithms: 
 
                                                         ,                                                  (25) 2

0ˆ( , )e cα αα θ == 2e
 
where , for example. The final regularized calibration result 1.2c = θ Q  can be obtained 
by numerically solving the following optimization problem with α̂  using gradient-
descent algorithms:  
 

                                
2model market

1

ˆarg min ( ) ( )
N

i i T
i

C C
θ

θ θ
=

= − +∑ E
Q

Q � Q Q Pα .                        (26) 
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[5] Empirical Example: Obtaining the Prior P   
 
The first and probably the most important step toward the implementation regularized 
calibration with relative entropy is to obtain the prior probability measure  because the 
addition of the relative entropy 

P
(TE Q P)

)

 means the introduction of the bias of the risk-
neutral martingale measure  to the prior measure . In this section, two very different 
ways of obtaining the prior P  are implemented using index options.   

Q P

 
[5.1] Computation of the Statistical Prior with Time-Series Data 
 
Our data consist of daily closing prices of the futures contract on the S&P 500 index with 
March 2005 maturity obtained from Chicago Mercantile Exchange (CME) Daily Bulletin 
for the period March 24, 2004, through March 17, 2005 for the total of 248 trading days. 
Thus, we have a sample of log return series  of size 1,2,...,( t NR = 247N =  where the log 
return is defined as: 
 

1

ln t
t

t

FR
F −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

 
where  is the futures price.  tF
 
According to Table 2, the true daily probability distribution of the log return of S&P 500 
futures price for this sample shows a slight negative skewness -0.01644 and almost zero 
excess kurtosis of -0.0003468. True distribution is plotted in Figure 5 using the kernel 
density estimator with the Gaussian kernel with the bandwidth 0.002: 
 

                                 
2

1

1 1 1( ) exp
0.002 2 0.0022

N t
N t

R RR
N π=

⎧ ⎫−⎪ ⎪⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑P .                         (27) 

    
Anderson-Darling (AD) test developed by Stephens (1974) is employed to perform the 
goodness-of-fit test of the following hypotheses: 
 
                             The sample of log return  comes from 0 :H 1,2,...,( t NR = )
                                     a population with a normal distribution function . 
                              is not true. 1 :H 0H
 
The advantage of AD test over the Kolmogorov-Smirnov test is its sensitivity for the tails 
of the distribution. AD test statistic is calculated as: 
 

               ( )2 1
1

1 2 1 ln ln 1N i N i
i

R R

R R R RA N i
N s

+ −
=

⎡ ⎤

s

⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎪ ⎪= − − − Φ + −Φ⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦
∑ ,         (28) 
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where Φ  is the standard normal cumulative density function, R  is the sample mean, and 

 is the sample standard deviation. Note that the sample values are rearranged in 
ascending order: 

Rs

 
1 2 ... NR R R≤ ≤ ≤ . 

 
In our example, the modified AD test statistic is computed as: 
 

2 2
2

4 25* 1 1.1412A A
N N

⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

, 

 
which exceeds the critical value of 0.787 at 5% confidence level. Thus, the normality of 
the log returns is rejected in this sample.  
 
We use the MLE to estimate the daily probability distribution of the log return under the 
statistical probability measureP  in the case of the MJD model. MLE is an estimation of 
the prior model parameter vector θP  to maximize the likelihood of observing the 
particular series of observations. The optimization problem in terms of the log likelihood 
function is:  
 

1
max ( ) ln ( ; )N

tt
l R

θ
θ θ

=
=∑

P
P PP , 

 
where  is the sample log return series and 1,2,...,( t NR = ) ( ; )tR θPP  is the log return 
probability density given by the equation (12) for the Merton jump diffusion model. Note 
because these are risk neutral densities, they need to be converted to the statistical density 
by replacing the instantaneous risk free interest rate  by the instantaneous return on the 
asset  and the convexity correction 

r
m ϖ P  is under the statistical probability measure .  P

 
For the estimation of MJD model, small time approximation for the likelihood of 
increments in the time interval [ , ]t t + ∆  is employed following Cont and Tankov (2004a): 
 
                             ( ; ) ( 1; ) (1 ) ( 0; )R R j R jθ λ θ λ∆ ∆ ∆∆ = + − ∆ =P P P θ ,                      (29) 
 
where ( 1;R j )θ∆ =P  is the conditional probability density of log return R  in a small 

time  given that one jump has occurred and ∆ ( 0;R j )θ∆ =P  is the conditional 
probability density of log return R  in a small time ∆  given that jump did not occur.  
 
The results are reported in Table 1 and 2. Figure 5 gives the estimated log return 
probability density plot and Figure 6 provides the plot of the log probability density to 
better illustrate the tail behavior. As expected, the true log return distribution is 
characterized by the higher peak, the heavier lower tail, and the thinner upper tail than the 
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BS density. These important features of the true log return probability density are 
captured better by the MJD model. Similar to Honoré (1998) and Cont and Tankov 
(2004a), the large estimated value of the intensity parameter in the MJD model 60λ =P  
(this means that on average the process jumps 60 times per year) casts a doubt  to the 
legitimacy of modeling jumps as a rare event under the statistical measure . This large 
estimated value of the intensity parameter in the MJD model suggests that the log return 
process actually mo es by frequent jumps instead of diffusion process and therefore this 
is an indication to resort to the Lévy models of infinite activity.  

P
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Figure 5 Statistica  daily log return probability density l ( )tRP  
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Figure 6 Log of Statistical daily log return probability density ( )tRP  
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Table 1 Statistically estimated parameters of each model 
 
Model     Log likelihood                          Model parameter vector θP  
 
BS               883.466         0.107419σ =P           
MJD            886.568         0.080850σ =P        60.00000λ =P         0.010476µ = −P    
                                           91.600779 10δ −= ×P          
 

Table 2 Annualized standardized moments of statistical log return probability 
density ( )tRP  

 
Model          Standard Deviation                  Skewness                  Excess Kurtosis     
 
True                     0.107640                          -0.016440                     -0.000347 
BS                        0.107419                                 0                                    0                      
MJD                     0.114548                          -0.045892                      0.004197 
                                                                                                                                                     
Next, Figure 7 plots the statistically estimated MJD Lévy measure of the equation (5) 
using the reported values in Table 1 for the range of . The 
reason that this MJD Lévy measure is a spike at 

8 8[ 10 10 , 10 10 ]µ µ− −− × + ×P P

µP  is due to the extremely small value of 
the estimated standard deviation parameter of the log return jump size δP .   
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Figure 7 Plot of the Statistically Estimated MJD Lévy Measure , ( ; , , )MJD R R λ µ δP P P  
 
For a notational clarity, let  be the statistical prior probability measure and SP SθP  be the 
statistical prior parameter vector which is: 
 
                 ,          (30) 9( 0.08085, 60, 0.010476, 1.600779 10 )S S S S Sθ σ λ µ δ −= = = = − = ×P P P P P

 
where the superscript ‘ ’ means ‘statistical’.  S
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[5.2] Computation of the Risk-Neutral Prior with Option Data 
 
Our data consist of daily settlement call option prices on S&P 500 futures with March 
2005 maturity obtained from Chicago Mercantile Exchange (CME) Daily Bulletin for the 
sample period from March 24, 2004, through March 16, 2005 for the total of 248 trading 
days.6 These American style option prices are converted to European style option prices 
using Barone-Adesi and Whaley (1987) quadratic approximation method to adjust for the 
early exercise premium. After eliminating call prices less than 0.125 due to reliability 
issues, the data used consist of a total of 6567 call prices. Daily series of three month 
Treasury Bill rate are used as appropriate risk-free interest rates. 
 
Using the above data, simply running an unregularized calibration of the equation (15) on 
each day for the sample period produces the successively updated risk-neutral prior 
parameter solutions. Let (  be the series (i.e. )RN

tP 1, 2,..., 248t = ) of successively updated 
risk-neutral prior probability measures and  be the series of successively updated 
risk-neutral prior parameter vectors which are illustrated in Figure 8.   

,( RN
tθP )
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Figure 8 Successively updated risk-neutral prior parameters Time series of calibrated 
parameters without regularization for the MJD model are plotted from the day 1 which is 
March 24, 2004, through day 248 which is March 16, 2005.   
 
Taking the average of the series of successively updated risk-neutral prior parameter 
vectors  yields the (fixed) risk-neutral prior parameter vector ,( RN

tθP ) RNθP  and let  be RNP

                                                 
6 March 16, 2005 is one day before the last trading day. 
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the (fixed) risk-neutral prior probability measure. Table 3 reports the MJD risk-neutral 
prior parameter vector as follows:  
 
              .        (31) ( 0.09544, 0.77742, 0.14899, 0.09411)RN RN RN RN RNθ σ λ µ δ= = = = − =P P P P P

 
Table 3 

Risk-neutral prior parameters 
The average, the standard error, the minimum, and the maximum of the successively 
updated risk-neutral parameters for the sample period are presented.  
 
Parameters                   Average           Standard Error        Minimum      Maximum 
 
MJD    σ                      0.09544                 0.00669               0.07470          0.11761 
            λ                      0.77742                 0.59858               0.29551          5.66366 
            µ                    -0.14899                 0.06361              -0.29654         -0.00985 
            δ                      0.09411                 0.02968               0.02681          0.14922 
 
BS       σ                      0.14437                 0.02253               0.09714          0.19339 
 
Figure 9 gives the plot of the risk-neutral log return probability density with the maturity 

 years and ure 10 provides the plot of the log of Figure 9 to better illustrate 
the tail behavior. As expected, the MJD model captures the negative skewness and the 
excess kurtosis of the log return probability density under the risk-neutral probability 
measure.  
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Figure 9 Risk-Neutral log return probability density     The maturity is set at 

.  0.25T =
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Figure 10 Log of Risk-Neutral daily log return probability density 
 

Table 3 Annualized standardized moments of risk-neutral log return probability 
density 

 
Model          Standard Deviation                  Skewness                  Excess Kurtosis     
 
BS                        0.14437                                  0                                    0                      
MJD                     0.18235                           -0.931611                       1.34135 
                                                                                                                                                     
Next, Figure 11 plots the risk-neutral MJD Lévy measure of the equation (5) using the 
reported values in Table 3. It is symmetric around the mean log return jump size RNµP  and 
its total mass is equal to the intensity RNλP . When Figures 7 and 11 are compared, we 
notice the remarkable difference of the Lévy measure under the statistical probability 
measure and the risk-neutral probability measure.   
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Figure 11 Plot of the risk-neutral MJD Lévy Measure 
 
[5.3] Comparison between the Statistical Prior and the Risk-Neutral Prior  
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Figure 12 illustrates the difference between the statistical prior probability measure  
and the risk-neutral prior probability measure  for four different maturities  

 0.75  and 1. Table 4 reports the difference in the standardized moments. We observe 
that the volatility, the negative skewness and the excess kurtosis all become more 
pronounced under risk-neutral measure  due to the heavier lower tails. This is a well-
documented fact which is due to the market participants’ fear for the market crush.    

SP
RNP 0.25,T =

0.5, ,

RNP

  
Notice also the remarkable difference between the statistical prior parameter vector SθP  of 
the equation (30) and the risk-neutral prior parameter vector RNθP  of the equation (31). 
Under the risk-neutral probability measure, the asset price jumps only less than once (i.e. 
0.77742 times) compared to 60 jumps under the statistical measure. This indicates that 
modeling jumps as rare events is legitimate under the pricing measure, but not under the 
statistical measure. The risk-neutral mean log return jump size RNµP  is -14.899% which is 
far larger than the statistical counterpart SµP  of -1.0476%. The uncertainty regarding the 
log return jump size is also much larger under the risk-neutral measure with 

 compared to the statistical coun rpart of .   0.09411RNδ =P te 91.600779 10Sδ −= ×P
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Figure 12 Statistical vs. Risk-Neutral prior log return probability densities     The 
statistical prior log return probability density is compared to the risk-neutral prior log 
return probability density for four different maturities 0.25,T =    and 1.  0.5, 0.75,
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Table 4 Annualized standardized moments of statistical vs. risk-neutral prior log 
return probability density 

 
Model          Standard Deviation                  Skewness                  Excess Kurtosis     
 
Statistical            0.114548                          -0.045892                      0.004197 
Risk-neutral        0.18235                            -0.931611                       1.34135 
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[6] Empirical Result of Regularized Calibration with Relative Entropy 
 
In this section, we apply Cont and Tankov’s (2004 a, b) regularization method with the 
relative entropy described briefly in the previous section to the index options 
parametrically with the MJD model. 
 
[6.1] Methods 
 
We compare the result of the calibration under the following three different methods. 
 
Method 1 (M1):      Unregularized calibration of the equation (15).  
Method 2 (M2):      Regularized calibration of the equation (24) with the statistical prior 
                                 of the equation (30).  
Method 3 (M3):      Regularized calibration of the equation (24) with the (fixed) risk- 
                                 neutral prior.  
 
[6.2] Empirical Results 
 
We describe the implemented regularization procedures step by step using the data on 
March 30, 2004 (245 days to maturity).  
 
Method 1 (M1) 
 
This is the simplest and fastest in computational time and the calibrated risk-neutral 
parameter vector is shown in Table 5. The sum of the squared pricing errors (the value of 
the objective function) is 0.132312. 
 
Method 2 (M2) 
 
The first step is to run the unregularized NLS which is the Method 1. We obtain the 
unregularized risk-neutral diffusion parameter estimate: 
 

0ˆ 0.108775ασ = = . 
 
The second step is to compute the model intrinsic a priori quadratic pricing error 2

0êα=  by 
running the unregularized NLS (i.e. Method 1) with 0ˆ 0.108775ασ = = . We obtain: 
 

2
0ˆ 0.132311eα= = . 

 
The third step is to estimate the regularization parameter α  by trading off the precision 
of the calibration for the numerical stability and the uniqueness of the calibration solution 
within the error bounds of the model intrinsic a priori quadratic pricing error . In 
other words, the third step is to numerically solve the following equation with gradient-
descent algorithms: 

2
0êα=
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1
( , ) min ( ) ( ) 1.2 0.132311

N

i i T
i

e C C
α

α α
θ

α θ θ α
=

= − + ≈ ×∑ E
Q

� Q Q P .        (32) 

 
But, the problem is that the equation (32) has no solution on . The cause is the 
remarkable difference between the statistical prior parameter vector 

R
SθP  of the equation 

(30) and the unregularized risk-neutral solution. Suppose that the solution of the 
regularized calibration problem is close to the unregularized risk-neutral solution. Using 
the statistical prior SθP  of the equation (30) and the result of Method 1 as the solution of 
the regularized calibration problem, the relative entropy turns out to be too large because 
the statistical measure and the risk-neutral measure is too different: 
  

1 1( ) 4.99078 10M S
T = ×E Q P 5 . 

 
In this case, the equation (32) becomes: 
 

                   
2model market 15

1

min ( ) 4.99078 10 1.2 0.132311
N

i i
i

C C
α

α
θ

θ α
=

− + × × ≈ ×∑Q

� Q .            (33) 

 
The solution of the regularization parameter α  in the equation (33) is approximately 
zero. Therefore, there is no meaning to regularize the calibration problem. But, this is 
because of the assumption that the solution of the regularized calibration problem is close 
to the unregularized risk-neutral solution. Next, consider the opposite case in which the 
solution of the regularized calibration problem is close to the statistical prior SθP  of the 
equation (30). Suppose that the solution of the regularized calibration problem is equal to 
the statistical prior SθP  of the equation (30) for simplicity. The relative entropy is zero by 
definition: 
  

( )S S
T 0=E P P . 

 
Thus, the value of the regularization parameter α  does not really matter and the sum of 
the squared pricing errors is calculated as: 
 

2model market

1
( ) 2834.1

N
S

i i
i

C C
=

− =∑ � P . 

 
Again, this is because of the significant difference between the statistical measure and the 
pricing measure. This example illustrates the fact that using the statistical prior SθP  of the 
equation (30), the regularized calibration solution cannot be close to the unregularized 
risk-neutral solution nor the statistical prior SθP . In addition, there is no regularized 
calibration solution which is in-between the unregularized risk-neutral solution and the 
statistical prior SθP  because of the remarkable difference between these two. Numerically 
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speaking, this is equivalent to stating that using the statistical prior SθP , the equation (32) 
has no real-valued solution with constraints: 
 

, , ,  and 0α σ λ δ > . 
 
Thus, the regularized calibration with the statistical prior is not implementable.    
 
Method 3 (M3) 
 
The first two steps are the same as Method 2. The third step is to numerically solve the 
equation (32) which is solvable this time because of the proximity between the risk-
neutral prior  and the regularized calibration solution (these are both risk-neutral 
measures). Numerically solving the equation (32) yields the estimate for the 
regularization parameter as: 

RNP

 
ˆ 0.043162α = . 

 
Finally, regularized calibration result θ Q  shown in Table 5 can be obtained by 
numerically solving the following optimization problem with α̂  using gradient-descent 
algorithms:  
 

2model market

1
arg min ( ) 0.043162 ( )

N

i i T
i

C C
θ

θ θ
=

= − +∑ E
Q

Q � Q Q P× . 

 
The sum of the squared pricing errors (the value of the objective function) is 0.156149: 
 

2model market

1

( ) 0.043162 ( ) 0.156149
N

i i T
i

C Cθ
=

− + × =∑ E� Q Q P , 

 

where 
2model market

1

( ) 0.132777
N

i i
i

C Cθ
=

− =∑ � Q  and ( ) 0.541481T =E Q P . 

 
Table 5 reports the results of the calibration, and Figure 13 through 18 compare the 
calibrated log return probability density and the calibrated Lévy measure for each method 
on six different maturity dates. We observe that the calibrated risk-neutral parameters are 
quite similar with or without regularization. This can be confirmed by observing the 
almost same calibrated log return probability densities and the Lévy measures between 
Method 1 and Method 3. It seems that Lévy measures are more sensitive to the 
regularization (i.e. the small difference in the calibrated parameters) than log return 
probability measures which is shown in Panel C of Figure 18. We also find that the 
difference in calibrated parameters between the regularized and the unregularized become 
more pronounced especially for near maturity options shown in Figure 18.  
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We believe that the reason of this no significant difference between the unregularized 
calibration and the regularized calibration is the use of 1.2c =  in the equation (25) and 
(32). This constant c  controls the degree of trading off the precision for the numerical 
stability and uniqueness of the calibration. The larger  indicates more willingness to 
sacrifice the precision and  means that the calibration is unregularized (i.e. 

c
1c = 0α = ). It 

is our opinion that the use of  does not sacrifice the precision too much for the 
numerical stability and uniqueness which means that the regularized calibration result 
will by design be close to the unregularized calibration result. But, we are not suggesting 
the use of larger  (for example 2) because it can be a too much of sacrifice of the 
precision. So, what is the optimal value for c ? Cont and Tankov (2004a, b) recommend 
the use of 1.1 . But, in the end, the choice of  is entirely up to the user’s 
discretion. One thing to remind is that the larger c  means the introduction of larger bias 
toward the prior and the regularized calibration result will show more significant 
difference from the result of the unregularized calibration. But, the use of larger c  means 
the user’s stronger belief in the prior information than the today’s information. Such 
situation is very difficult to imagine.  

1.2c =

c

1.5c< < c
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Table 5 
Calibration Results 

 
Methods                σ Q                      λQ                      µQ                      δ Q  
 
March 30, 2004 (245 days to maturity) 
 
M1                   0.108775            0.307107            -0.267493           0.140028 
M2                                                                   
M3                   0.108995            0.300333            -0.272398           0.136964 
 
July 1, 2004 (180 days to maturity) 
 
M1                   0.093676            0.485600            -0.197655           0.111576 
M2                                                                    
M3                   0.092968            0.509876            -0.190205           0.114493 
 
September 27, 2004 (120 days to maturity) 
 
M1                   0.095187            0.732404            -0.144411           0.082790 
M2                                                                    
M3                   0.095463            0.714316            -0.147262           0.081582 
 
November 22, 2004 (80 days to maturity) 
 
M1                   0.094648            0.662536            -0.107062           0.080695 
M2                                                                    
M3                   0.095101            0.630734            -0.111636           0.079383 
 
January 20, 2005 (40 days to maturity) 
 
M1                   0.091795            1.296250            -0.070378           0.056700 
M2                                                                    
M3                   0.091314            1.259500            -0.075242           0.052736 
 
March 4, 2005 (10 days to maturity) 
 
M1                   0.086929            1.009830            -0.054321           0.043944 
M2                                                                    
M3                   0.088270            0.736562            -0.067053           0.046267 
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A) Calibrated log return probability density.  
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B) Log of Panel A).   
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C) Calibrated Lévy measure.  
 
Figure 13 Plot of calibrated log return probability density and Lévy measure on 
March 30, 2004 (245 days to maturity) 
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A) Calibrated log return probability density.  
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B) Log of Panel A).   
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C) Calibrated Lévy measure.  
 
Figure 14 Plot of calibrated log return probability density and Lévy measure on 
July 1, 2004 (180 days to maturity) 
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A) Calibrated log return probability density.  

-1 -0.5 0 0.5 1
T−period Log return RT

-40

-30

-20

-10

0

goL
ytilibaborP

ytisneD

MaturityHTL = 120 Days

RN Prior

M3

M1

 
B) Log of Panel A).   
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C) Calibrated Lévy measure.  
 
Figure 15 Plot of calibrated log return probability density and Lévy measure on 
September 27, 2004 (120 days to maturity) 
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A) Calibrated log return probability density.  
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B) Log of Panel A).   
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C) Calibrated Lévy measure.  
 
Figure 16 Plot of calibrated log return probability density and Lévy measure on 
November 22, 2004 (80 days to maturity) 
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A) Calibrated log return probability density.  
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B) Log of Panel A).   
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C) Calibrated Lévy measure.  
 
Figure 17 Plot of calibrated log return probability density and Lévy measure on 
January 20, 2005 (40 days to maturity) 
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A) Calibrated log turn probability density.  re
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B) Log of Panel A).   
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C) Calibrated Lévy measure.  
 
Figure 18 Plot of calibrated log return probability density and Lévy measure on 
March 4, 2005 (10 days to maturity) 
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[7] Conclusion  
 
In this paper, we investigate the effect of the regularization with the relative entropy in 
the framework of the parametric calibration of the Merton jump-diffusion model to the 
index options. It is important to realize that using the relative entropy and using the prior 
mean the introduction of the bias of the calibration solution toward the prior to gain the 
numerical stability and the uniqueness by making the objective function more convex. 
This means that the user has some belief in the use of the prior (i.e. otherwise, why do 
you bother?). Another important point is that the regularization is not the method to 
locate the global solution, it is the method to enhance the uniqueness and the stability of 
the calibration solution by sacrificing its precision. In terms of the choice of the prior, the 
only implementable prior is the risk-neutral prior. The regularized calibration with the 
statistical prior is not implementable because the statistical prior is a statistical measure 
and it is too much away from the risk-neutral (i.e. pricing) measure.     
 
The result shows that with or without regularization, calibrated risk-neutral parameters, 
calibrated log return probability densities, and calibrated Lévy measures are not 
significantly different. It seems that Lévy measures are more sensitive to the 
regularization than log return probability measures. Notice also that the difference in 
calibrated parameters between the regularized and the unregularized become more 
pronounced especially for near maturity options.  
    
From our empirical result that the regularization with the relative entropy using the risk-
neutral prior does not make any significant difference in the solution and considering the 
extra computation time necessary for the regularization procedures, we prefer the 
calibration without any regularization which uses only today’s information and yields the 
unbiased solution although the unregularized calibration solution may not be stable and 
unique.   
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